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In 1949 Dirac published a paper in which he proposed various ways to combine 
special relativity with the Hamiltonian formulation of dynamics; these were 
referred to as forms and three different forms, the instant, the point, and the front 
forms, were discussed. Dirac considered the front form to be "mathematically 
the most interesting." Despite this, the front form appears to have been the least 
explored. This paper presents the results of a study of quantum mechanics in the 
front form. 

1. I N T R O D U C T I O N  

In 1949 Dirac published a paper  entitled Forms of  Relativistic Dynam-  
ics in which he proposed various ways to combine special relativity with the 
Hamiltonian formulation of  dynamics; these were referred to as forms and 
three different forms, the instant, the point, and the front forms, were 
discussed (Dirac, 1949). That  generally adopted is the instant form, which 
is based on physical data at some instant of  time relative to a particular 
inertial observer, i.e., on a constant-time spacelike hypersurface. The point 
form is based on an observer 's past lightcone. A detailed formulation of  
classical mechanics on an observer 's past lightcone as well as an at tempt at 
quantization have been given by Derrick (1987a,b). These ideas have been 
pursued more recently by Mosley and Farina (1992a,b). 

The last of  these forms was based on the 3-dimensional hypersurface, 
hereafter called the light front, formed by a plane wave propagating with 
the velocity of  light; Dirac called this the front form. The idea was to set up 
a theory in which the dynamical variables referred to physical conditions 
on a light front. This form, which was considered to be "mathematically 
the most  interesting" by Dirac (1949), has been less explored than the 
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others, although light-front field theories have been discussed (Chang et al., 
1973; Pauli and Brodsky, 1985; Harindranath and Vary, 1987). Our 
objective is to establish quantum mechanics in the front form. 

2. LIGHT-FRONT C O O R D I N A T E S  

For clarity we shall start by considering a (1 + 1)-dimensional space- 
time denoted by j / 2 ,  i.e., we consider a classical particle moving in one 
dimension. Let x ~  and x 1 = x  be coordinates associated with an 
inertial observer, i.e., with respect to these coordinates the metric has 
components given by the diagonal matrix r/,~ = (1, - 1 ) ;  we shall call these 
Cartesian coordinates. In the instant form physical data at time t are 
specified on the hypersurface ~ of constant time t. ~ is the usual spatial 
space of the observer at time t; the symbol ~t is introduced here in place 
of the usual notation ~ for the spatial space. The symbol R will be used to 
denote the real line without attachment to space-time. Following Dirac, 
surfaces of constant values of ct + x are called light fronts. We can 
introduce light-front coordinates y" related to x ~ by 

y~ yl----X 

It is convenient to introduce the variable z = y~ which has the dimension 
of time, and write y l simply as y as we did for x 1. We then have a family 
of light fronts ~ (parametrized by ~) covering the entire space-time ~,2. 
Points on ~ are specifiable by coordinates (cz, y) which are not Cartesian 
since the components of the metric are now given by the matrix g,~, where 

'0) 
3. C L A S S I C A L  M O T I O N  IN LIGHT-FRONT 

C O O R D I N A T E S  IN j/t2 

Traditionally an inertial observer describes the motion of a classical 
particle of rest mass m 0 in his or her cartesian coordinates (ct, x); the 
observer is supposed to know the actual position x of the particle at each 
time t. A free particle moving with speed v = dx/dt will have the usual 
expressions for the canonical momentum and Hamiltonian 

p =my; H =(p2c2+m~c4)l/2; where m = mo/(1 - v 2 )  1/2 and Vc =v/c  

derived from the Lorentz-invariant variational principle 

 {-moc f,...,-,-,','}-- o 
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with Lagrangian 

- m0 c z[r/p~ (dx U/dx ~ ~/dx 0)],/2 

To describe the motion of the particle on ~ with coordinates yU we can 
employ a Hamiltonian formulation derived from the variational prin- 
ciple 

~{-mocf[g~v(dy~)(dyV)] ' /2}=O 

with Lagrangian 

L = - mo c 2[guy (dyP/dy ~ ~/dy o)] 1/2 __ _ mo c z[ 1 - 2c - l(dy/dz)] 1/2 

The canonical momentum rc is defined by n = OL/8w, where w = 
dy/dz, and the Hamiltonian by K = w n -  L. We have 

--m~ c3 K = I  ( m~ c2 ) 

The following properties are obvious: 

1. n > 0, irrespective of  the direction of motion (sign of  w). As will be 
seen later, this result imposes a severe constraint on the way this 
theory is quantized. 

2. A stationary particle, i.e., with w = 0, has a nonzero momentum,  
i.e., rCo = moc. 

3. The Hamil tonian K is positive definite with the value moc 2 for a 
stationary particle as expected. 

For  the motion of  a free particle in ~/2  we have 

1 ( (moc)2"~ moc 
w e =  ~ \ 1  ~z 2 ,],  7z---( l_2wc)l /2  , y = w ( Z - - Z o ) + y  o 

0 0  1 . Here w c denotes the ratio w/c and takes values in ( -  , ~), n takes the 
corresponding values in (0, ~ )  with n = rc 0 = moC when w c = 0. Note that 
the velocity wc is related to vc by Wc = vc/(1 + v~); rc < n o corresponds to 
negative w~, which can assume arbitrarily large negative values as v tends 
to - c. 

4. C A N O N I C A L  T R A N S F O R M A T I O N S  R ELATING Q U A N T I T I E S  IN 
CARTESIAN AND IN L I G H T - F R O N T  C O O R D I N A T E S  

Canonical variables (y ,~ )  and (q,p) in light-front and Cartesian 
coordinates (Appendix A) can be related by a canonical transformation 
obtained from an appropriate generating function f ( p , y )  through the 
relations 

n = -Of /ay ,  q = - ~ f / a p  
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On ~(2 the required generating function is 

f (P,  Y) = - (Po + P)Y, where 

This leads to the transformation 

P0 = (p2 + m2c 2) 1/2 

PO 
y = q, 7~ = Po + P, 

Po + P  

Equivalently with the generating function 

~2 -- m2c  2 
f '(rr,  q) -- q with 

2rr 

K = H =  
C(7~ 2 -[- m 2 c  2) 

27r 

~f '  Of' 
P = ~q ' Y = t~T: 

we obtain the inverse transformation 

2rr 2 7r E - m2c  2 
H = K = (p2c:  + m2c4) 1/2 .. 2Ai Y' P - q - 7[ 2 "~ rrtoC 2~ 

Finally we should point out that the choice of light fronts is not 
unique. We could have chosen the light fronts given by constant values of 
ct - x ,  i.e., we can introduce light-front coordinates y'~ related to x ~' by 

y,O = ct -- x ,  y'~ = x 

We then have a family of light fronts ~ -  which also covers the entire 
space-time. The components of the metric are now given by the matrix g~,v 
where 

(: g,wv ~ 

5. QUANTUM MECHANICS IN v/C a IN THE FRONT FORM 

The object here is to obtain a quantum theory in terms of variables on 
~ .  We shall first establish a quantum Hilbert space on ~ .  

5.1. Hilbert Spaces on Light Front 

Let ~(x ~ x) be a complex scalar function on ~/42; then the integral on 
,A/2 given by 

f f d x~  dx ,~(x~ x)125((c~ - x~ - x 2) 

= - x ,  x ) l  2 + tr +  )12) 

is Lorentz invariant, assuming the integral exists. The f-function reduces 
the two-dimensional integral to two invariant one-dimensional integrals the 
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first of  which is over the light front ~ and the other over ~ - .  Introduce 
functions ~ ( y )  on ~ by O~(y) = ~(cr - y, y); then ~ as a function of  the 
light-front coordinates (cr, y) is the restriction of  ~ on ~//2 to the light front 
~ .  We shall use these functions on ~ to construct a Hilbert space A" (~ )  
for the purpose of  establishing a quantum mechanics on ~ (Schweber, 
1964). More precisely we take 

y c ( ~ )  = L2(~,  d/z) 

where square-integrability is with respect to the measure d/z = ay/lyl. Note 
that L 2 ( ~ ,  d/z) is unitarily equivalent to L 2 ( ~ ,  dy) with the unitary map V 
which maps ~,: ~ L 2 ( ~ ,  dy) to ~ ~ L 2 ( ~ ,  d/z) given by 

�9 ~(y) = (Vdp~)(y) = ]yll/zq~,(y), dp~(y) = ( V - l ~ ) ( y )  = dp~(y)/ly]l/2 

So, we can identify ) f ' ( ~ )  with the more familiar L 2 ( ~ ,  dy) from now on. 
For brevity we shall write gb~(y), ~ ( y )  as ~b(y), ~(y) ,  suppressing the 
subscript r. 

5.2. Quantization on the Light Front 

Traditionally, as with classical mechanics, quantum theory is in the 
instant form since it is formulated in terms of  vectors and operators in the 
Hilbert space ~r = L2(S~t, dx) (functions on Se t square-integrable with 
respect to the measure dx). To establish a quantum theory in the front form 
we shall adopt, initially, the Hilbert space ~ ( ~ )  and quantize the basic 
classical observables 7r, H, and y. A more detailed analysis will subse- 
quently reveal that g e ( ~ )  is not the appropriate Hilbert space because we 
are dealing with quantization under a constraint which usually leads to 
many complications (Dirac, 1966). 

Let us consider operators in the Hilbert space L 2 ( ~ ,  dy) first; the 
corresponding operators in AP(~)  can be obtained by a unitary transfor- 
mation. 

A first attempt might be to associate ~r with the self-adjoint operator 
I~ = - i h  d/dy in L 2 ( ~ ,  dy). A difficulty arises from the constraint that the 
classical observable rr is positive definite. We can accommodate this con- 
straint in the usual manner, i.e., by assuming that physical states are 
described only by members of  the subspace of  L 2 ( ~ ,  dy) which corre- 
sponds to the positive part of the operator/~. To formalize these ideas we 
shall introduce some related quantities. 

Elements ~b of  L Z ( ~ ,  dy) are functions of  y, i.e., ~b = ~b(y). The 
Fourier transform of ~b is ,f~ 

~(k) = P~p - ~ ~ dy ok(y) exp(--i-ky), 4- = i/h 
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which can be regarded as a function of the variable k ~ R, i.e., a function of 
"k-space" ~ = {k: k e R}. Here ff denotes the Fourier transform operator 
on L2(4 ,  dy). 

Being square-integrable with respect to the measure dk, these trans- 
formed functions ~(k) form a Hilbert space to be denoted by/~2(~,  dk), 
i.e.,/~2(~, dk) -- ffL2(4, dy). Let L2+ ( 4 ,  dy) be the subspace of L2(4 ,  dy) 
which corresponds to the positive part of the operator ]~. Since the Fourier 
transform ~ -- F-~ff- 1 of the operator ~ is the multiplication operator k in 
E2(~,  dk) it follows that L2+ ( 4 ,  dy) consists of elements gb whose Fourier 
transforms ~ are functions of the variable k of the form ~(k) - -0  for 
almost every k <0;  functions in L2+(~, dy) which correspond to such 
truncated Fourier transforms are known as Hardy class functions (Bohm 
and Gadella, 1989). These functions form a subspace since/~2+ ( ~ ,  dk) = 
ffL2+ ( 4 ,  dy) is obviously a subspace of /~2(~,  dk). Note that a subspace 
always means a closed subspace. Furthermore L2+ ( ~ ,  dy) clearly reduces 
the operator k'. We shall denote the reduction of ~" in L2+ ( 4 ,  dy) by ~+ 
and denote the domain of ]~+ by ~g+. In the space ~ ( 4 )  we have the 
corresponding subspace ~ f ( 4 )  + = VL2+ ( 4 ,  dy). Let ~+ denote the pro- 
jector from ~ f ( 4 )  onto g ( 4 )  +, i.e., ~ + ~ ( 4 ) - -  J r ( 4 )  +, and let 
denote the operator Vs V -~, which is clearly self-adjoint in ~ f ( 4 )  + 

We are now in a position to present a quantization scheme based on 
geometric quantization (Woodhouse, 1980; Wan and Viasminsky, 1977; 
Wan et al., 1984b): 

1. Every quantum system is associated with a Hilbert space, called the 
quantum Hilbert space of the system. Pure states correspond to unit 
vectors in the Hilbert space and observables correspond to positive 
operator-valued measures. 

2. In the case of a free particle in the front form the quantum Hilbert 
space is ~f~ 

3. The momentum ~ is quantized as the Self-adjoint operator ~ in 
A~(4) + where 

d 1 
= V~+ V -~ = - i h l y l  ~/2 dy [y[ '/2 

acting on the domain ~ = V~a+ ~ ( 4 ) + .  
4. The Hamiltonian K is quantized as the self-adjoint operator 

R = �89 + m~c2/:~) in ~ ( 4 )  +- 
5. The position y is quantized as the multiplication operator 33 = y in 

a~ (4 )  +. 

This quantized theory possesses a number of features that distinguish it 
from conventional quantum mechanics: 
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1. We have adopted a generalized quantum mechanics (GQM) which 
admits positive operator-valued (POV) measures as observables. Various 
studies on the foundations of quantum mechanics have strongly suggested 
that POV measures should be admitted as observables (Kraus, 1983; Busch 
et al., 1991). Mathematically, projector-valued (PV) measures correspond 
one-to-one to self-adjoint operators, while POV measures correspond to 
symmetric operators. It follows that the generalized quantum theory admits 
symmetric operators as observables. This generalization of quantum theory 
opens up a whole new avenue for dealing with quantization problems. 
When quantizing a classical observable within orthodox quantum theory 
one would insist on obtaining a self-adjoint operator as the quantized 
observable; failing this, one would say that the classical observable cannot 
be quantized (Wan et al., 1984a). A quantization scheme adapted to GQM 
need only to produce symmetric operators. Accepting maximal symmetric 
operators as observables would not lead to a radical departure from 
traditional quantum theory, since maximal symmetric operators corre- 
spond one-to-one to POV measures in the same way that self-adjoint 
operators correspond to PV measures (Akhiezer and Glazman, 1963, p. 
135). The relevance of this discussion of GQM will become obvious when 
we come to look at the light-front position observable. 

2. The quantum Hilbert space is taken to be the subspace Jcg(~) + of 
9ff(~). Elements ~(y) of ~ ( ~ )  + are related to Hardy class functions. It 
follows that states are described by wave functions ~(y) which can vanish 
only over a set of measure zero, e.g., ~(y) cannot be equal to zero over any 
nonvanishing interval. In other words, there are no "localized" wave 
functions. 

3. The momentum operator 72 possesses an inverse, since it does not 
admit zero as an eigenvalue. The Hamiltonian operator/~ is therefore well 
defined, self-adjoint, and positive;/~ has a simpl e spectrum (Jauch, 1968, p. 
47) lower bounded by moc 2. This follows from the positive nature of the 
momentum 72, which is consistent with the classical constraint rc > 0. If one 
had not taken this classical constraint into account, one would have 
obtained a Hamiltonian operator which is not positive. We should mention 
that 72 is identical to the restriction to ~ ( ~ )  + of the operator in o~t~(~) 
obtained by quantizing n geometrically. Note that in applying the geomet- 
ric quantization formula (Wan and Viasminsky, 1977) the square root of 
the determinant of the metric there should be taken to be lyl 

4. The existence or otherwise of a position observable in relativistic 
quantum mechanics has long been a source of controversy; it is certainly 
not a routine matter to find a position observable (Kalnay, 1971). Our 
present theory is no exception. The position operator 9 is not self-adjoint, 
but only maximal symmetric in aft(E) + (see Appendix B). This is closely 
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related to the nonlocalizable nature of the wave function @(y) discussed 
above. Orthodox quantum theory with its insistence on self-adjointness of 
all its observables would rule )3 out as an observable. This is why we adopt 
the generalized quantum theory according to (1) above. The POV measure 
of fi, denoted by /~());b), is given by /~+Zb(y)/~ + (see Appendix C). 
Physically, having fi as the position observable and ~,~(~) + as the quan- 
tum Hilbert space means that the particle cannot be sharply localized, i.e., 
the probability of the particle being in any finite interval b given by 

b) ll 2 is always less than 1. We should point out that this is not the 
first time that a POV measure has been used to represent a position 
observable. Kraus (1983) argued strongly that POV measures should be 
used to represent position observables of photons. 

Relativistic quantum mechanics in the instant form encounters a 
difficulty in the form of Hegerfeldt's theorem (Hegerfeldt, 1974), which 
states that "In a relativistic quantum theory of point particles there are no 
one-particle states that are ever localized in a finite spatial region and yet 
obey at later times the principle of relativistic causality" (Prugovecki, 1986, 
p. 82). This theorem is based on the mathematical result that unitary time 
evolution generated by a positive Hamiltonian operator leads to an instant 
spreading of the wave packet. Clearly the present theory suffers no such 
difficulty, because there are no states in the quantum Hilbert space ~ ( ~ )  + 
which are localized in a finite spatial region in y at any instant. 

In adopting J / f (~ )  + as the quantum Hilbert space our quantization 
scheme is now seen to give a quantum momentum observable r2 consistent 
with the classical constraint, and a position observable fi which makes the 
above Hegerfeldt theorem irrelevant. 

Finally, we should mention that there exists a continuity equation 
relating the probability density P0 and the probability current density Pl 
(Appendix D). 

5. Geometric quantization provides a unitary mapping between this 
light-front quantum mechanics and the orthodox instant form. This will be 
demonstrated in the next subsection. 

5.3. Classical Canonical Transformations and Quantum 
Unitary Transformations 

Classically the instant form and the front form are related by a 
canonical transformation. A similar situation also exists quantum mechan- 
ically, i.e., there is a unitary map of the Hilbert space ~ ( a ~ ) +  onto 
�9 ~ ( ~ t )  = L 2 ( ~ t ,  dq) with r = t as in the classical canonical transformation. 
For technical reasons it turns out to be more convenient, in the first 
instance, to set up a mapping between ~ ( ~ )  + and the Cartesian momen- 
tum-space wave functions. Let ~ be the momentum space conjugate to ~ ,  
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and , ,~ (~ )= /~2 (~ ,  dp) be the Hilbert space of functions ~t(P) on 
square-integrable with respect to the measure dp. As before we shall drop 
the subscript t from the wave function from now on./~2(~, dp) is of course 
the Fourier transform space of L2(~,  dq). We shall demonstrate explicitly 
in what follows that a unitary mapping exists between ,r  + and ~r 
For later convenience we shall call ~ ( ~ ) +  and ~ ( ~ )  the light-front 
coordinate representation and Cartesian momentum representation, respec- 
tively. 

5.3. I. Unitary Transformations of Hilbert Spaces 

In geometric quantization a prescription known as pairing is given to 
relate observables quantized in different coordinate systems whose associ- 
ated classical canonical variables (q',p') and (q",p") are related by a 
canonical transformation defined by a generating function fo(P', q") 
(Woodhouse, 1980). The pairing defines a map T which relates the wave 
functions ~o"(q") to wave functions ~'(p').  T is explicitly given by 

fo 1 q~,,(q,,) . . . .  I OZfo [ '/z 
~ ' ( p ' )  = (T~o")(p') - (2~h)1/-----~ j - o o  expt§ ~ g, ,(q.)  1/4 dq" 

with the inverse given by 

~"(q") = (T-  l~o')(q") 

l f: (2rch) 1/2 ~ '(p ' )  exp( -4-fo ) ~ 1/2 g"(q") _ 1/4 dp' 
lop oq [ 

Here g"(q") is the determinant of the metric in coordinates q". 
The pairing construction does not always lead to unitary transforma- 

tions; we have to check each case carefully. Applying this pairing construc- 
tion to our present case, we have the following map between ~ ( ~ )  + and 
.r with z = t: 

1 r ,o . , / 'p + p o ~  1/2 ay 
~(p) = ( T~)(p) = (2n~)1/2 j _  ~(y) exp[--/-(p t po)Yl~--~o ) o~ _ _ ] y l l / ~  

First we observe that the integral exists, since it is the Fourier transform of 
~,(y) / ty l  1/~, which is square-integrable with respect to the measure dy. The 
map preserves the scalar product and is bijective with the inverse map given 
by (Appendix E) 

1 ~ _ . , { p  +p0"~ 1/2 
O(y) = (T- ' f f ) (y)  = (2rch),/2 J -  if(p) exp[4-(p ~-po)yjl---Z-- ~ 1Y11/2 dp 

o o  k /0 / 

We have therefore established the existence of a unitary map between the 
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Hilbert spaces o~(o~) + and ~ ( ~ ) ,  and hence between ~ ( ~ ) +  and 
a~(~). 

The unitary map T enables us to transform operators between the 
light-front and the Cartesian pictures as described in the next subsection. 

5.3.2. Unitary Transformations of Operators 

First we can express operators in light-front coordinate representation 
in terms of Cartesian momentum representation: 

�9 The momentum observable 72: T'~T -l =p +Po. 
�9 The Hamiltonian/s TKT-' = ( p 2 c 2  -I- m~e4) 1/2. 
�9 The position observable fi: 

Let / t  = ( p 2 c 2 - t - m 2 c 4 ) 1 / 2 ;  then B is clearly the Fourier transform of the 
quantized operator H in the Cartesian coordinate representation space 
o~(~) ,  i.e., /q = (/32c z + mZe 4) 1/2, where/3 = - ih d/dq. 

It is interesting to note that for the position observable the same result 
is obtained by quantizing the classical expression y = [Po/(Po +P)]q using 
the symmetrization rule, i.e., 

where ~ = ih O/Op is the position operator in the momentum representation 
space o~(7'(~). The operator T~T-' is of course not self-adjoint. This is 
consistent with geometric quantization since the vector field generated by 
the function y = {Po/(Po +P)}q is incomplete, so it cannot be quantized to 
give a self-adjoint operator. As pointed out earlier, such an operator can 
still represent an observable in a generalized quantum theory. The expres- 
sions for these operators in the coordinate representation, i.e., in af ' (~) ,  
can be obtained by a Fourier transformation and for brevity will not be 
given here. 

Conversely we can also express operators in Cartesian momentum 
representation in terms of light-front coordinate representation: 

�9 The momentum/3: r - ' p r  = _ m2)/2~. 
�9 The Hamiltonian H: T-1/ T = + m~c2)/2~ = K. 
�9 The position q: T-lq T= 1 7~2 7~2nt_m2c2 . 5{[ /( 0 )]y+Y[~2/(~Z+m~e2)l}. 

Finally we should mention that the domains of various operators are 
related by the unitary operator T in the standard fashion. 
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6. QUANTUM MECHANICS IN 5 [  4 IN THE FRONT FORM 

We can extend our analysis to four-dimensional spacetime j//4. The 
results are summarized in what follows. The light-front coordinates y" are 
related to Cartesian coordinates x u by 

y~ = x~  + x l ,  j = x j for j =  1,2,3 

A three-dimensional hypersurface of constant y0 is a light front in j t4 .  
This light-front will be denoted by o~ with z = y~ while a constant-time 
t = z / c  hypersurface will be denoted 
coordinates has components 

- 1  0 0 

gu~ = 0 0 - 1 

0 0 0 - 

by 6~t. The metric in light-front 

Classical motion for a free particle is described by the Lagrangian 

L = -moc2[1 - 2w 1/c - (w2)2/c2 - (w3)2/c 2] 1/2 

where w j = d y / d z .  The conjugate momentum rcj = aL/Ow j and the Hamilto- 
nian are given by 

--m c 3 --m c2w �9 
7~ 1 = > O, ~s 

L L 

c c 
K =  ~nl (1 12 + (m~ = K1 + ~ (~2 -Jr- x2)  

where KI =�89162 + (moc)2/rq} is recognized to be the contribution along 
the y l direction. A boldface symbol denotes a three-component object, 
e.g., n = (rq, re2, n3) with Inl 2 rr12 + 2 2 = 7"(2 "[- n 3" The index s takes the values 
2, 3. 

Canonical variables ( y ,  nj) on the light front ~ in light-front coordi- 
nates and (qJ, p j )  on the constant-time hypersurface 6~t with z = t  in 
Cartesian coordinates (Appendix A) are related by a canonical transforma- 
tion generated by the generating function 

f ( p , y ) = - { ( p o + p l ) y ~  + p 2 y 2 + p 3 y 3 } ,  where p o = ( ] p l 2 + m 2 c 2 )  I/2 

which leads to the transformation 

P0 y l =  

Po +Pl  
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with the inverse transformation given by the generating function 

f ' (n ,  q ) = - { C  r 2 -  ~ 2 -  7 r ] -  7~3q 3} -2-~1 (moc)2) ql + x2q2 + 

which leads to 

q~ =(i,,i = 2~2 '~ , -7 ~0c)  i ]  y ,  
2 2 7r23 _ _  (moc)2 7~ 1 - - 7 ~  2 - -  

Pl = 2rq ' 

= y +  - _ _  . 

~l.12+(moc)=) y 

p, =,~,, n = K = ( t r ,  l=: +,ngc') '/2 

As before, we define a Hilbert space on ~ as 

J~f (~)  = L 2 ( ~ ,  d/~) 

where d# =d3y/lyl{, introduce the corresponding map V which maps 
L2(.~, d/A) to L2(~, d3y), and denote the Fourier transform operator on 
L2(,~, day) again by ft. Finally, define the subspace ~r + of M ' ( ~ )  
consisting of  those functions ~ E ~ f f ( ~ )  such that (PV*)(k)  = 0 for k I < 0. 

Following the previous quantization scheme, we take ~(f(~,) + as the 
quantum Hilbert space and quantize zr~, K, and yJ as operators on M ' ( ~ )  + 
given by 

d 1 d 
~J=YJ, ~1 = --ihlyll'/2dy, lylp/2, Rs = -~h dyS 

C ^ 2  = ~ (1~1 § (m0c) 2) 

We can also demonstrate the existence of  a unitary map of drt'~(~) + 
onto the space .~(6~t)= s d3p) from the pairing construction which 
leads to a map T between ~ ( ~ )  + and #(S~tt) given by 

l f:  ~(p) = (T~)(p) = (2rc~)3/2 ~ exp[--i-(po + pl)y ~ - -i-p2y 2 - 4p3y 3] 

x (p_o +p,y/2 ~(y) C o/  e3y 
with the inverse map 

�9 (y) = (T- l~) (y)  _ (2gh) 3/2 ~ exp[./_(p ~ +pl)y~ + _i_p2y2 + 4p3y3] 

x (p_o + p,y/2 [y ql/=ff(p) d3p 
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Operator transformations are as follows: 

T~I T-1 =Pl +Po, T'~s T - 1  =P~, T K T - I  = H  

I f Po -I ~1 Po ) 
T y I T - ' = 2 ~ P - ~ - ~ o q  + Pl+Po 

} T ~ T  -1 = ih \P~ + Po] Opl + 2p0(Po +p~) 

where ~J = ih O/Opj. 
All the operators are self-adjoint except for )~, which is maximal 

symmetric and so is its unitary transformation (Appendix F). 
We should also point out that there is a conserved current in the 3 + 1 

theory (Appendix D). 

7. GENERATORS OF THE POINCAR]~ GROUP 

We shall now show how we may obtain a representation of the 
Poincar6 algebra in terms of operators on the light front. Classically we 
know that the ten infinitesimal generators of the Poincar6 group in 
Cartesian coordinates are given by 

P,  = (Pl, P2, P3, H) 

Jij = qiPj - qjP~ = -(q~Pj - qJP~) (i,j  = 1, 2, 3) 

Joy = - qjH = qJH 

In terms of light-front coordinates we have 

J23 = --Tz3Y 2 + ~2Y 3 

']'31 = 7z3Y 1 -- ~z2 2 2 C) 
2n~ 

J12 = --~2Y 1 + rc~ 2 2 2n~ y2 

Jol = C7~lY l 

( lt2q" ( m ~  
J02 = c lr2y I + 21q y2 

( n2+(m~ ) 
J03 = c rr3y I + 21rl y3 

The expressions for Pu have already been given in the preceding section. 
We can quantize these observables geometrically in the light-front 

momentum space (Wan et al., 1984b) since they all generate complete 
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vector fields (Appendix G). Let 4 + = R + x R x R be the classical light- 
front momentum space, and let # ( ~ + )  = L 2 ( ~  +, d37[). Then the quan- 
tized observables in # ( ~ + )  are all self-adjoint (Appendix G) and are 
given by 

( J23 = ih \n2 

]31 = ih 7[ 3 0711 2711 07[3 ~- 

Z 2 = i h  -7[2 -~ 7[~ 2 2 (moc) 2 0 n 2 
2711 07[2 2711 

Jo, = ihc 7[x -~l +-~ 

Jo2 = ihc 7[2 -t- 2711 07[2 -}- 

( 63 "2+(m~ 0 7[~1) 
= 713 2711 + 

An alternative method of obtaining these operators would be to carry 
out the quantization of the generators in Cartesian coordinates, and then 
effect a unitary transformation, using the operator T, from ~(S~t) to 
~,ug(~) +. The same results would be obtained. To verify this it is necessary 
to know the unitary transform relating ~ ( ~  +) and ~ ( ~ ) + ;  these are the 
light-front momentum and coordinate representation spaces. The pairing 
construction shows that the unitary transform F+ is given by 

(F+ O)(n) - (27[h)3/2 (I)(y) exp(--iy" n) d3y ly~l 1/: 

with inverse 

if:f: -- ~(g) exp(iy" ~) lyll 1/2:7[ (F+I~')(Y) (27[h) 3/: ,=o 

The operators obtained here are different from those for the lightcone 
(Peres, 1967; Mosley and Farina, 1992a,b). 

8. LIGHT FRONT VERSUS LIGHTCONE 

Recently there has been substantial progress in developing a point- 
form quantum mechanics where states and other physical quantities are 
referred to an observer's past lighteone (Mosley and Farina, 1992a, b). It 
seems thatmost of the work on the point form has been of a formal nature. 
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We have endeavored to develop a systematic and rigorous point-form 
quantum mechanics, but have encountered severe difficulties. The root 
cause of  all these difficulties would appear to be the singular geometry of 
the lightcone cg, which is not a differential manifold. To see this, consider 
the (1 + 1)-dimensional space-time j [2 .  Introduce lightcone coordinates 
)7~= (c~,)7) defined in terms of the Cartesian coordinates x ~ = (ct, x) by 
(Derrick, 1987a,b) 

)70 = el  + Ixl, )7 = x 

In these coordinates the metric has components given by the matrix g,v, 
where 

gu~ =( , sg ln( )7)  -SOn()7) ) 

and sgn()7) is the sign of )7. The metric is singular when x =)7 = 0. A 
surface of constant ~, to be denoted by cg~, is a past lightcone with apex at 
the point (cz, 0); we shall denote cg e by cr from now on. Even classical 
mechanics in the point form possesses some peculiar features. The Lagran- 
gian of a free particle is given by 

E, = - mo c 2[guv (d)TU/d)7~176 ,/2 

= -moo2[1 - 2 c - '  sgn()7)(d)7/d~)] 1/2 

The resulting canonical momentum ff and Hamil tonian/~ are given by 

- 1  ( + ( m 7 ) 2  ) = (m0 c) 3Lsgn()7) , K = ~ sgn()7) 

The nonglobal nature of the formulation is clearly seen in the fact that both 
and K" are undefined at the apex and in the discontinuous jump in r~ from 

a negative to a positive value as the particle passes through the origin. 
Let us try to quantize the theory. Notice first that the classical system 

is subject to the constraint yz~ > 0, i.e., ff > 0 for 37 > 0 and ff < 0 for )7 < 0. 
As pointed out earlier, quantization under a constraint is not a straightfor- 
ward matter and in fact it does not seem possible to accommodate this 
constraint within a point-form quantum mechanics. For example, suppose 
we begin by forming the Hilbert space ~ff(cg) of functions r on (g which 
are square-integrable with respect to the measure d)7/])7], i.e., ~r 
L2(Cg, d)7/1)71), despite the singularity of the measure at the origin. The 
coordinate variable )7 can be quantized naturally as the self-adjoint multi- 
plication operator )7 in ~'~((g), but how can we quantize r~ under the 
classical constraint y~ > 0? We cannot simply ignore the constraint, since it 
is this that guarantees the positivity of K'. On top of this, the quantization 
of K" is complicated by the factor sgn()7). 
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If  we examine the classical system, we can see that it strongly suggests 
the partitioning of the lightcone into two disjoint regions c~ • with c~ + 
being the region on the right of the apex and c~ - the regoin on the left, so 
that U - u c ~ + =  U0, which is the lightcone U with the apex removed. 
Everything is smooth and well defined within each of c~+. If  in the 
quantized theory we also relax the requirement of having global quantities 
and make some ad hoc quantizations, we can make some progress. First we 
construct the direct sum space 

~ ( U o ) e  = ~ ( c ~ - )  ~ ~r +), where Jct(c~ • = L2(C~ • d•/l•l) 
Next we can try to construct operators on ~ ( c ~ - )  and ~ ( U  § separately 
to correspond to observables on c~ + and U - .  Consider the operator 

d 1 
f i  = -ihlfil'/= dfi lyll, 2 

in ~(c~ +). With the usual domain this operator is maximal symmetric. Its 
absolute value Inl is self-adjoint and positive (Weidmann, 1980). In passing 
we should point out that the operator Inl has an undesirable feature, i.e., 
it possesses a degenerate spectrum. That aside, we may identify Inl as the 
quantum observable corresponding to ~ in c~ +. It follows that one should 
take as the Hamiltonian in ~/t~(U +) the positive operator 

/~=~(ll*II +(m~ ,] 

Similar operators can be established on ~t~(U-). 
We may try to go one step further and consider the relation- 

ship between these operators and those in the instant form as we did for the 
light front. On c~ + the classical variables can be seen to be related by the 
same canonical transformation as that between the light-front and Carte- 
sian coordinates (a different transformation has to be used on U-) .  
However, we find that we cannot then proceed as before and obtain a 
unitary transform between the operators with the help of the paring 
construction. 

There is an alternative approach based on a generalization of the 
maximal symmetric operator fI which can produce a positive-definite 
momentum operator without degeneracy in its spectrum; the idea is to 
introduce a Hilbert space on U0 in terms of two-component wave functions. 
A discussion of this would be deviating too far from our present study of 
quantum mechanics on the hght front and so we shall not develop these 
ideas here. 
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9. C O N C L U D I N G  REMARKS 

Geometric quantization furnishes a light-front quantum mechanics in 
a natural way. The adoption of generalized quantum mechanics makes it 
possible to accommodate the non-self-adjoint nature of the position opera- 
tor. What is more, the pairing construction shows us how to relate the 
light-front and Cartesian pictures. In those instances where the same 
classical observable can be quantized in the light-front and in the Cartesian 
coordinate systems the resulting quantum observables are unitarily related 
by the pairing construction. Notice that this is not something that can be 
taken for granted. If  a classical observable can be quantized geometrically 
in two canonically related coordinate systems and the two Hilbert spaces 
are related by a unitary map derived from the pairing, then it is not 
generally the case that the two representations of the quantized observable 
are related by that map. The fact that this is a property of the present 
scheme makes it all the more compelling. 

APPENDIX A. ON CANONICAL TRANSFORMATION 

First consider the simpler case of motion in d~ 2. Suppose in light-front 
coordinates the particle is at position y with momentum 7r at light front 
"t ime" r, and suppose that in Cartesian coordinates the position and 
momentum of the same particle are given by x = q and p at Cartesian time 
t = z. Noting that Vc = P/Po, it is easily verified (by examining the particle's 
motion in the space-time diagram of j//2) that x = q =y  +Y(P/Po), or, 
equivalently, y = qPo/(Po + P). For the momentum variables one can easily 
verify the relationship zr = P o + P .  The coordinates (y, it) and (q,p) are 
therefore related by a canonical transformation since these relationships 
can be derived from the generating function given in the main text. 

Next consider the general case of motion in ~,4. Then we have 
vl =Pl/Po and v~=ps/po, which lead to q l = y l + y l p l / p  0 and qS= 
yS+ y lps/p o. The corresponding relationships between the canonical mo- 
menta are ZCl = Po + Pl, n, = p~. These describe a canonical transformation, 
since they are derivable from the generating function given in the main text. 

APPENDIX B. ON MAXIMAL SYMMETRY OF .P 

The operator ih d/dk in /$2+ ( ~ ,  dk) is well known to be maximal 
symmetric (Akhiezer and Glazman, 1961, p. 111). It follows that its inverse 
Fourier transform )3 in L 2+ (~,~, dy) is maximal symmetric and so also is the 
operator ~ in ~,'ff(~)+. 
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APPENDIX C. ON THE POV MEASURE OF .P 

Being maximal symmetric in ~ ( ~ ) + ,  the operator 33 possesses a 
unique POV measure (Akhiezer and Glazman, 1963, p. 135). Since 33 in 
~ ( ~ )  + is the reduction of 33 in ~ ( ~ )  to J f ( ~ )  + = /~r  and since 
the spectral measure of 33 in ~ f ( ~ )  is given by Xb, where b are the Borel sets 
of the reals, the required POV measure is simply /$(33; b ) =  RZb_R by 
Naimark's theorem (Akhiezer and Glazman, 1963, p. 121). 

APPENDIX D. ON PROBABILITY AND PROBABILITY 
CURRENT DENSITIES 

If we put 

I~1: 
po- lYI' P'-- 5 t lyl + \ ~ )  \ ~,~I~ 

then the continuity equation 

OPo 
~t + = 0  

follows from the Schr6dinger equation 

ih O~ 

The corresponding expressions in L 2 (.~, dy) are 

C 
po= t~t: , p,=-~{l~12+mgc21?u165 
The expressions for p~ are useful only when ~ -  1 and/~'+1 can be meaning- 
fully applied. 

I n  ~ , / 4  there is also a continuity equation with 

l~l 2 1 f i l l  = re:c: 
p o -  [yll , JOl = 2 ~ ] ~ - ~ -  - -  ^ - - l  [ (~ 1 l (I)*)(I) -~- (1)*(~ 11(I))]  1yi11/2 =, 

and 

1 , ^ 2 ^ _ 1  ^2 ^ _ x 

e, g , \  ly'l 
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A P P E N D I X  E. O N  T H E  U N I T A R Y  T R A N S F O R M A T I O N  T 

For each ~(y)~3cf(~) + we have ~b(y) = ~(y)/ ly l  '/~ = ( V - l t l ) ) ( y ) 6  

L 2 (~ ,  dy) and its Fourier transform q~(k) which vanishes for k < O. It 
follows that 

11,112= II~ll= = I~;(k)l = dk 

Since if(p) = ( r~) (p)  = q~(p +Po)[(P +Po)/Po]'/2 we have 

f: ;_~ I]~711= = I~(p)l 2 dp = 18p + po)[ 2 dp 
o o  0O 

= 1~12(u) du = II~ll 2 = I1,112 

Next, we have 

T-~T~ = [y],/2 f_o ~(p . .{p +po~,/2 

x exp[-4-(p +Po)Y] dp 

= (2~h) ly1'/2'/2 ~ ~(k) exp(--i-ky) dk = 

Finally, for each i f ( p ) e ~ ( ~ )  define a function ff'(k) of k =p  +Po by 
~'(k) = [Po/(P + Po)] m~(p). Then 

[r 2 dk -- Ir 2 dp < 

We can identify if' with q~L2+ ( ~ ,  dy). Consequently each ~e~v?(~) is 
mapped to ( I ) e~ (~ )  + via q~ and if' by 

ly[ '/2 f= 
�9 (y) = v~ - (~-~ST/2 3o ~(k) exp(~ky) d~ 

_ [yl,/2 [oo ~'(k)  exp(4-ky) dk 
(2~--~/2 Jo 

[y[,/2 foo (p_~oPO),/2 
- (~-ff~'i/2 J-oo if(p) exp[-/-(p +Po)Y] dp = (T - ' f f ) ( y )  

These results confirm the unitary nature of T. 
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APPENDIX F. ON MAXIMAL SYMMETRY AND 
SELF-ADJOINTNESS OF TENSOR PRODUCT 
OPERATORS 

First we can identify L2(,.~, d3y) with the tensor product space 
L2(~, @1)| @2 @3). The maximal symmetry of :pl follows from 
the same property of the corresponding operator in L2(~,  dy ~) because of 
the proposition given below. 

Let A 1 be a maximal symmetric operator in a Hilbert space ~ with 
deficiency indices n+ = 1, n_ = 0. Let D2 be the identity on Hilbert space 
Yt~. Let ~ = ~| and Ac = A~ | R2. Then we have the following result: 

Proposition. Ac is maximal symmetric in ~ with deficiency indices 
no+ = dim{~} and n~_ = 0. 

Proof. Suppose ~ is one-dimensional. Then the deficiency indices of 
A~ clearly coincide with those of A1. Next suppose ~ is of finite dimension 
m. Let {D2j,j = 1, 2 , . . . ,  m} be a decomposition of the identity n2 in ~r 
Then we can write 

A ~ = A I |  ~ (AI| 
j=l  

It follows that he+ = m and n~_ = 0 since the deficiency indices of the direct 
sum operator Ac are equal to the sums of the corresponding indices of the 
operators A~ | 02: (Akhiezer and Glazman, 1963, p. 128). This result also 
holds when ~ is infinite-dimensional: in such a case the result will be 
n~+ = oo and no_ = 0. In all these cases A~ is maximal symmetric. For a 
similar proof see Exner and Seba (1987). 

Finally many of the operators in the main text can be identified with 
the closures of tensor products of self-adjoint operators. It then follows 
that these operators are self-adjoint (Wiedmann, 1980). 

APPENDIX G. ON THE POINCARI~ ALGEBRA 

Define the classical Poisson bracket by 

(aG 0E 
{G'E}= ~: \~qJ Op: Oq:-~p: 

Then the ten generators satisfy the following standard Poisson bracket 
relations: 
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A lot of work is required to verify the completeness of the vector fields 
generated by these classical observables. Here we shall illustrate the calcula- 
tions involved by considering the completeness of the vector field 

0 ix21 -- ~ -q_~___] -- (moc):'~ 0 
x "  = + t .  2=, /On  

generated by Jal. The integral curves of X31 satisfy the following equations 
(r a parameter): 

d= l d=__2= = d=3 = (g l  2 2 2 2) - -  = 2  - -  x 3  - -  (moc) 
-dr-r = -=3, dr O, dr 2=1 

The integral curve originating at the point n = no at r = 0 is given by 

=,(r) = [(pO)2 + (=o)2],/2 sin(r + =o) +pO 

n2(r) = go 

=3(r ) = [(po)2 + (=0)2] 1/2 cos(r --{- o~ 0) 

Ot0 = arctan O(pO~) 

Here, Pl and P0 are regarded as functions of =j; p0 and p~ are the values of 
Pl and Po corresponding to nj = =~ at r = 0. Note that P0 remains constant 
along the integral curve, i.e., @o/dr = 0. The above solutions are well 
defined for all r eN and are consistent with the constraint =1 > 0  since 
p~ > [(p~)2 + (=~)211/2. It follows that the vector field X31 is complete. The 
quantized operator J31 will then be essentially self-adjoint on the set of 
infinitely differentiable functions of compact support on o~ + and so will 
have a unique self-adjoint extension (Wan and Viasminsky, 1977; Mackey, 
1963, pp. 100-104). 

In passing we should mention that the vector field X31 has critical 
points; this requires some careful consideration. We shall not pursue this 
here since a similar problem was discussed in detail by Wan and Viasmin- 
sky (1977). 
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